ANALYSIS OF BEHAVIOR OF GRAPHITE ON THE BASIS
OF NONLINEAR HEREDITY THEORY

N. N. Dergunov, L. Kh, Papernik,
and Yu. N, Rabotnov

The behavior of graphite is described on the basis of the nonlinear heredity theory taking
account of the temperature factor in the range 20-3000°C. The necessary characteristics
are obtained from the data on creep and from the stress-strain diagrams. A physical in-
terpretation of the obtained results is attempted.

1. The creep deformation of polycrystalline graphite is to a large extent reversible and the relation
between the stress and the deformation is appreciably nonlinear even in the range of small stresses. There-
fore, for the description of the temporal effects it is meaningful to use the nonlinear heredity theory des-
cribed by the defining equation [1]

t
ple® =o(t) + Kt —v)o(x) dr (1.1)
0
Here ¢(¢) is the nominal instantaneous load function. Equation (1.1) shows that the nature of the non-

linear relation between the stress o(t) and the deformation e(t) is retained during the entire deformation
period. In the case of creep this is responsible for the similarity of the isochronous creep curves.

Equation (1.1) has a close connection with the nonlinear hereditary equation of Volterra-Freshe [2].
Solving Eq. (1.1) for £(t) we arrive at the following expression:

oo t

e)= oo+ Kt — o ar] (1.2)

k=1 0

In describing the behavior of a material with the use of Eq. (1.2) only a finite number of terms need
be retained in the expansion depending on the specified accuracy of approximation. An increase in the num-
ber of terms of the series does not complicate the determination of the required constants.

As shown in [2], Eq. (1.2) is equivalent to (1.1) in the case where the function & = ¢ ~1(¢) is inverse of
the nominal instantaneous load function o = ¢(g) and can be represented in the form of a polynomial in o:

£ =gl(o) = %akc" (1.3)

Below we shall use both formulas (1.1) and (1.2) for the description of the behavior of the graphite
under investigation assuming that (1.3) is valid.

As the kernel in Eq. (1.1) or (1.2) we shall use the exponential-fractional function with negative par-
ameter:

K(t—1) =2 (—pt—1), —Alal0 p>0 (1.4)
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In the investigation of the behavior of a material in a temperature field all the parameters of the def-

ining equation should be taken to be temperature-dependent. Equations (1.1) and (1.2) with (1.4) taken into
consideration can be written in the form
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H
@l (), T1=5(t) + A (T) { Bar) (— B(T), t — W) 5 (v)dv (1.5)

0

o (6) = Sae(T) 5 (6) +MT)§ Bucry (— BT), t — )0 (0| (1.6)
k

L]

Here the index k also depends on temperature.

The equations of creep are obtained from (1.5) or (1.6) by putting o (t) = gy = const; they have the form

Qle), T1=0cof (t. T), &(t)= Nax(T)osft (¢, T)
k

Here we have introduced the notation

i
F(t, T) =1+ A(T) § Dury (— B(T), £ — 1) a7

0

For e (t) = g, = const the relaxation of the stresses is described by the equation

11
5(t) = @ o T) [t — (1) § Bucry (— B(T) — M(T), £ — 1) d1]

0
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In order to be able to use this model for polycrystalline graphite it is necessary to determine the
characteristics of the material as functions of the temperature.

We shall determine the necessary parameters from the data on creep at constant stresses and fixed
temperatures by the method described in [2]. As before, the similarity of the isochronous creep curves of
the material at various constant temperatures should be checked. Furthermore, the question of the feasib-
ility of the use of stress-strain diagrams obtainedfor very rapid loading at the corresponding temperatures
as the instantaneous loading curves should be cleared up. '

2. Graphite of mark VPP with medium grain structure was used for the investigation. The material
had the following characteristics: limiting tensile strength 130 kg/cm?, specific weight 1.85 g/cm?, and
graphitation temperature ~ 3000°C. The samples were cut parallel to the axis of pressing from blanks with
dimensions ¢ =220 and /=300 mm. Detailed information on the technology of production of graphite is given
in {4].

The samples for creep tests and for tests under rapid loading had identical operating part with ¢ =10
and =50 mm. The tests under rapid loading were conducted with tenfold repeatability at each temperature,
while the creep tests were carried out with twofold repeatability at each stress level. The selection of iden-
tical samples at each temperature was done from the measurement of electrical resistance. The investi-
gations were carried out on DST-5000 equipment reequiped for graphite tests, The samples were heated in
an electrical resistance furnace with a tubular heater in argon flow. The displacements of the sample heads
were transmitted by extensometric rods made of graphite, quartz, and Invar directly from the sample to the
indicator head, where the displacement was converted into an electrical signalwhichwas automatically re~
corded by a potentiometer; in the case of rapid loading it was recorded on a two-coordinate potentiometer
PDS-021 in the coordinates p ~ Al, while in the creep tests it was recorded on EPP-09 in Al ~t coordinates.
A tensometric dynamometer served as the load sensor. The deformation of the sample fillets was taken
into consideration in the analysis of the experimental data. During the tests the temperature was maintained
constant automatically with an accuracy of +25°C with the use of a dilatometric sensor. The temperature
was changed by an optical pyrometer of Pyronet type with an accuracy of 1%.

A detailed description of the equipment is given in [5].

3. The experiments yielded data on creep at temperatures of 2000, 2200, 2400, 2600, and 2800°C in
a wide range of constant stresses (Fig. 1, dashed lines).

Families of isochrones were constructed from the creep curves for each temperature; the isochrones
showed quite good similarity for all temperatures. Therefore the families of the isochrones were approx-
imated by expression (1.5) and the values of the parameters «(T), 8(T), and A(T) of the kernel were deter-
mined. The curves of o = ¢ (g, T) were constructed from formula (1.5) by extrapolation from each isochro-
nous curve for the obtained values of the parameters of the kernel. A family of creep isochrones for T =
2400°C is shown in Fig. 2a as an example; the averaged curve obtained from the set of extrapolated points
is also shown in the same figure; open circles denote the experimental data.

Computations carried out for each temperature showed that the parameters a(T) and 8(T) are prac-
tically independent of temperature and have values close to —0.5 and 0.1 respectively. The parameter A(T)
showed a weak dependence on temperature. Therefore the values of A(T) were refined keeping the values
@ =~0.5 and 8= 0.1 (min) ~0+% fixed for all temperatures. The values thus obtained are:
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Fig. 3 tained diagrams were approximated by (1.3) where the first four terms

are retained.

As a result the following values of the coefficients are obtained:

T=20 1000 4500 2000 2500 2800 3000 °C
a1 =1.55 1,45 1.05 0.6 0.98 4.3  1.6.107° cmz/k1§ R
a=64 0 05 4.05 0.7 0.25 0.4.10° (cm2/Kg)
as=0 0 0 0 0,28 0.53 0.78.4078 (cm?/kg)®
=0 0 o0 0 0 0.8 2.8.401° (cm?/kgt

The curves computed from formula (1.3) with the above values of the coefficients are shown in Fig. 3
by continuous lines.

For extending the obtained results to the intermediate temperatures in the range 20-3000°C we shall
take the parameter of 9-function constant in Eq. (1.6): a==0.5 and 8 =0.1. We shall also assume that the
temperature dependence of the coefficients ai(T) and A(T) is of Arrhenius type and is of the form

ak(T)=ak°exp(—g-}_—) (k=1,2,3,4 (3.1)

AMT) = ar"exp (— %) (3.2)

Here T is the absolute temperature, Ui and U, are constants having the sense of activation energies
of some mechanism, R is the gas constant, and ay and a;\ are constants.

In order to obtain the values of the parameters occurring in (3.1) and (3.2) we approximate the ob-
tained experimental dependences a(T) and A(T) by piecewise linear functions in the coordinates log ay,x ~
1/T. The result of this approximation is shown in Fig. 4. As seen from this figure, three segments in the
high-temperature range can be separated out: 1500-2000°C, 2000-2500°C, 2500-3000°C; in each segment
the parameters in formulas (3.1) and (3.2) are constant:

T =1500—2000 20002500  2500—3000 °C
U1=—8.9 13.7 13.7 kcal/g-atom
U, =11.8 —1.1 —69.5 keal/g-~atom
Us=0 36.6 36.6 keal/g-atom
Uyg=0 0 119.0 kcal/g-atom
U,=0 22.8 0 keal/g-atom
a;® == 0.85.10%¢ 28.5-10 28,5-10  cm?¥/kg
a,° = 13.8-108 0.81-10-¢ 16,9.40710 (cmz/kg)z
as° =0 20.7-107  20.7.407  (cm?#/kg)®
a° =0 0 2.8.107¢ (cm2/kgyt
a4, =0 14.9 0.23 (min)-0.5

At temperatures below 1500°C the coefficient 24(T) changes little; the coefficient a,(T) has a minimum
in the range 300-500°C. Additional experiments are necessary in order to explain this minimum.

However, graphite is used mainly in the range of high temperatures; therefore the investigation of the
temperature range below 1500°C is not of much interest.
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The curves computed from formula (1.3) with the coefficients @} (T) obtained from formula (3.1) at the
corresponding temperature are shown in Fig. 2b for comparison with the instantaneous load curves ¢ =
¢(e, T).

Considering the intrinsic scatter of the properties of the material and also the fact that the stress-
strain diagrams are obtained during a small but nonzero time interval, the agreement should be considered
completely satisfactory. Hence, at sufficiently rapid loading rates the stress-strain diagrams can be used
as the instantaneous load curves.

As shown in [2], the case of determination of the deformation characteristics within the framework
of the investigated model can be considerably simplified, appreciably reducing the volume of required long
experiments on creep.

The creep curves were computed from (1.6) for constant stresses and temperatures corresponding to

the experimental values. The computed curves are shown for comparison in Fig. 1 by the continuous lines.
The agreement with the experiment is satisfactory.

4. The proposed phenomenological model describes the relation between the stress and the deforma-
tion by a fourth degree polynomial.

The authors did not aim at an exact description of the deformation and creep curves, since a large
inhomogeneity and, hence, instability in the behavior under deformation is characteristic of graphite. Be-
sides, the determination of the values of the entire set of parameters of the defining equation is not unique.

The self-similar behavior of the variation of the temperature-dependent coefficients, shown in Fig. 4,
can be explained in the following way.

The nature of variation of the coefficient @, = 1/E reflects the temperature behavior of the instanta-
neous modulus of elasticity E. :

The curve of variation of the coefficient a,, responsible for the base slip, has a minimum in the range
300-500°C, This fact is apparently related to the anisotropic compression of the crystals along the axis
perpendicular to the base plane and to the blocking of the systems of base slip. Anisotropic compression is
a consequence of the anisotropy in the thermal expansion coefficient. For a monocrystal this coefficient has
a negative value along the base plane up to 500°C and is equal to ~—1.5-107% deg™!, while along the axis
perpendicular to the base plane it has a positive value ~28 - 1078 deg'1 [6]. The coefficient increases as it
goes over into the range of positive values. The monotonic increase of strength and the low strength in the
range 1500-2500°C indicates the predominance of the mechanisms of base slip.

An intense increase of the strength accompanied by an increase of plasticity in the temperature range
2500-2800°C indicates a change of the mechanism responsible for plastic deformation. A similar phenomenon
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(intense deformation reinforcement) is observed in some metals with hexagonal structure and is explained
by activation of nonbase slip systems caused by the temperature increase {7}. Probably this occurs in
graphite at temperatures of the order of 2500°C and is reflected in the change of the deformation curve and,

hence, in the appearance of the term a 303.

As the temperature increases (in the range 2800-3000°C) the concentration and the mobility of point
defects increases: the vacancies in the base plane and the interphase atoms injected between the planes [8];
on one hand this leads to a distortion of the planes and a decrease of the base slip, and on the other hand to
an increase of the role of the mechanisms controlling diffusion. ‘

A confirmation of the above statement apparently lies in the appreciable plasticity 10-20% and in the
more mildly sloping deformation curves in the range 2800-3000°C. Due to this the coefficient a, becomes
nonzero.

The values of the activation energy must be regarded as "apparent" [9], since they are a result of the
action of several mechanisms.

The above explanation of the phenomenological model represents only a scheme which can be made
more detailed later on.
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