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ON T H E  B A S I S  

The behavior  of graphi te  is descr ibed  on the bas i s  of the nonlinear  heredi ty  theory  taking 
account of the t e m p e r a t u r e  factor  in the range  20-3000~ The n e c e s s a r y  c h a r a c t e r i s t i c s  
a re  obtained f r o m  the data on c reep  and f r o m  the s t r e s s - s t r a i n  d i a g r a m s .  A phys ica l  in-  
t e rp re t a t ion  of the obtained r e s u l t s  is a t tempted.  

1. The c reep  deformat ion  of po lycrys ta l l ine  graphi te  is to a la rge  extent r e v e r s i b l e  and the re la t ion  
between the s t r e s s  and the deformat ion  is apprec iab ly  nonlinear  even in the range  of smal l  s t r e s s e s .  T h e r e -  
fore ,  fo r  the descr ip t ion  of the t e m p o r a l  ef fec ts  it is meaningful to use  the nonl inear  heredi ty  theory  d e s -  
c r ibed  by the defining equation [1] 

t 

(p[e (t)] ---- ~ (t) -t- I K (t - -  x) a (T) dv (1.1) 
0 

Here  ~o(e) is the nominal  instantaneous load function. Equation (1.1) shows that  the nature  of the non- 
l inear  re la t ion  between the s t r e s s  a(t) and the deformat ion  e(t) is r e ta ined  during the en t i re  deformat ion  
per iod.  In the case  of c reep  this is r e spons ib le  for  the s imi l a r i t y  of the i sochronous  c reep  cu rves .  

Equation (1.1) has a close connection with the nonlinear  he red i t a ry  equation of V o l t e r r a - F r e s h e  [2]. 
Solving Eq. (1.1) for  s(t) we a r r i v e  at the followIng express ion :  

t 

e(t)--= ~ ak[~(t)q- I K ( t - -  v)~(~)dV] ~ (1o2) 
k ~ l  0 

In descr ib ing  the behavior  of a ma te r i a l  with the use of Eq. (1.2) only a finite number  of t e r m s  need 
be re ta ined  in the expansion depending on the speci f ied  accu racy  of approximat ion .  An i nc r ea se  in the num-  
ber  of t e r m s  of the s e r i e s  does not compl ica te  the de te rmina t ion  of the requ i red  constants .  

As shown in [2], Eq. (1.2) is equivalent  to (1.1) in the case  where  the function e = ~a-l(a) is inverse  of 
the nominal  instantaneous load function o = ~p(e) and can be r e p r e s e n t e d  in the f o r m  of a polynomial  in a: 

e = ~-1 (~) = ~ a ~  (1.3) 
k" 

Below we shall  use  both fo rmu la s  (1.1) and (1.2) for  the descr ip t ion  of the behavior  of the graphi te  
under  invest igat ion a s suming  that  (1.3) is valid.  

As the kernel  in Eq. (1.1) o r  (1.2) we shal l  use the exponent ia l - f rac t iona l  function with negat ive p a r -  
ame te r :  

K ( t - - T )  = ~ 9 ~ ( - - ~ ,  t - - ~ ) ,  - - t ~ 0 ,  [ 5 ~ 0  (1.4) 
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Fig .  1 

In the  i n v e s t i g a t i o n  of  the b e h a v i o r  of a m a t e r i a l  in a t e m p e r a t u r e  f i e ld  a l l  the  p a r a m e t e r s  of the  d e f -  
in ing equa t ion  shou ld  be t a k e n  to be t e m p e r a t u r e - d e p e n d e n t .  Equa t ions  (1.1) and  (1.2) wi th  (1.4) t aken  into 

c o n s i d e r a t i o n  can  be  w r i t t e n  in the  f o r m  

l 

Is (t), r l  = z (t) + x (r) I ~a . (T)  (-- ~ (T), t - -  T) (~ ( l : )  dr  
0 

t 

e.(t) ---- ~ a ~  (T)[a (t) ~- X (T)I  ~a(T)(--  ~ (T), t - -  7) o (~) dx] ~ 
k a 

(1.5) 

(1.6) 

H e r e  the  index  k a l s o  depends  on t e m p e r a t u r e .  

The  equa t ions  of c r e e p  a r e  o b t a i n e d  f r o m  (1.5) o r  (1.6) by  pu t t ing  c~ (t) = a 0 = eons t ;  t hey  have  the  f o r m  

[s (t), T] = Zo[ (t, T), 

H e r e  we have  i n t r o d u c e d  the no ta t ion  

8(t) = ~a~(T)oo~]  k (t, T) 
k 

t 

/ ( t ,  T) = I + ~ ( T ) I 3 ~ ( r ) ( - -  ~ ( r ) ,  t - - T ) d T  
0 

F o r  ~ (t) = % = c o n s t  the  r e l a x a t i o n  of the  s t r e s s e s  is  d e s c r i b e d  by  the equa t ion  

t 

~(t) ---- (p (eo, T) [t - -  ~ (T) I 3.(T) ( - -  ~(T) - -  x ( r ) ,  t - -  T) dr] 
0 
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In o rder  to be able to use this model for polycrysta l l ine  graphite it is n e c e s s a r y  to determine the 
charac te r i s t i c s  of the mater ia l  as functions of the tempera ture .  

We shall determine the n e c e s s a r y  pa rame te r s  f rom the data on creep at constant s t r e s se s  and fixed 
t empera tu res  by the method descr ibed in [2]. As before,  the s imi lar i ty  of the isochronous creep curves  of 
the mater ia l  at var ious  constant t empera tu res  should be checked. Fur the rmore ,  the question of the feas ib-  
ility of the use of s t r e s s - s t r a i n  d iagrams obtained for ve ry  rapid loading at the corresponding t empera tu res  
as the instantaneous loading curves  should be c leared up. 

2. Graphite of mark  VPP with medium grain s t ructure  was used for the investigation. The mater ia l  
had the following charac te r i s t i c s :  limiting tensile strength 130 kg / cm 2, specific weight 1.85 g / c m  a, and 
graphitation t empera tu re  ~ 3000~ The samples  were cut paral le l  to the axis of p ress ing  f rom blanks with 
dimensions q~ = 220 and l = 300 ram. Detailed information on the technology of production of graphite is given 
in [4]. 

The samples for creep tes ts  and for tes ts  under rapid  loading had identical operating par t  with ~ = 10 
and l = 50 ram. The tes ts  under rapid loading were conducted with tenfold repeatabi l i ty  at each tempera ture ,  
while the creep tes ts  were ca r r i ed  out with twofold repeatabi l i ty  at  each s t r e s s  level. The selection of iden- 
tical samples at each tempera tu re  was done f rom the measurement  of e lec t r ica l  r es i s tance .  The invest i -  
gations were ca r r i ed  out on DST-5000 equipment reequiped for  graphite tes ts .  The samples were  heated in 
an e lec t r ica l  res i s tance  furnace with a tubular heater  in argon flow. The displacements  of the sample heads 
were t ransmi t ted  by extensometr ic  rods made of graphite,  quartz,  and Invar direct ly  f rom the sample to the 
indicator head, where the displacement  was converted into an e lec t r ica l  s ignalwhiehwas automatical ly r e -  
corded by a potentiometer;  in the case of rapid loading it was r ecorded  on a two-coordinate  potent iometer  
PDS-021 in the coordinates  p ~Al ,  while in the creep tests  it was r ecorded  on t~PP-09 in ~l  ~ t  coordinates .  
A tensometr ic  dynamometer  served as the load sensor .  The deformation of the sample fillets was taken 
into considerat ion in the analysis  of the experimental  data. During the tests  the t empera tu re  was maintained 
constant automatical ly with an accuracy  of -~ 25~ with the use of a di la tometr ic  sensor .  The tempera ture  
was changed by an optical py romete r  of Pyronet  type with an accuracy  of 1%. 

A detailed descript ion of the equipment is given in [5]. 

3. The experiments  yielded data on creep at t empera tu res  of 2000, 2200, 2400, 2600, and 2800~ in 
a wide range of constant s t r e s s e s  (Fig. 1, dashed lines). 

Famil ies  of i soehrones  were constructed f rom the creep curves  for each tempera ture ;  the isochrones  
showed quite good s imi lar i ty  for all t empera tu res .  Therefore  the famil ies  of the i sochrones  were approx-  
imated by express ion (1.5) and the values of the p a r a m e t e r s  ~(T), fl(T), and ;~(T) of the kernel  were de te r -  
mined. The curves  of ~ = q~ (s, T) were constructed f rom formula  (1.5) by extrapolation f rom each i sochro-  
nous curve for the obtained values of the p a r a m e t e r s  of the kernel.  A family  of creep isoehrones for  T = 
2400~ is shown in Fig. 2a as an example; the averaged curve obtained f rom the set of extrapolated points 
is also shown in the same figure; open c i rc les  denote the experimental  data. 

Computations ca r r i ed  out for each tempera ture  showed that the pa r ame te r s  a(T) and fl(T) are  p r a c -  
t ically independent of t empera ture  and have values close to - 0 . 5  and 0.1 respect ive ly .  The pa rame te r  k(T) 
showed a weak dependence on tempera ture .  Therefore  the values of k(T) were refined keeping the values 

= - 0 . 5  and fi= 0.1 (rain) -~ fixed for all t empera tu res .  The values thus obtained are:  
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Extrapolated instantaneous load curves  e = ~(e, T) a re  shown in 
Fig. 2b (dashes). 

Thus it is established that the pa r ame te r s  of S-funct ion remain  con-  
stant in a wide range of tempera tures .  This considerably simplifies 
further use of the investigated model. The effect of the t empera tu re  is 
taken into considerat ion only by the instantaneous load function a = ~0(~, T) 
and the pa ramete r  X(T) in the case of re lat ion (1.5) or  by the set of coef-  
ficients ak(T ) and ~(T) in the case of the equivalent relat ion (1.6). 

For  elucidating the applicability of s t r e s s - s t r a i n  d iagrams as the 
instantaneous load curves,data  on rapid loading at 20, 1000, 1500, 2000, 
2500, 2800, and 3000~ were obtained (dashed lines in Fig. 3). The ob- 
tained diagrams were approximated by (1.3) where the f i r s t  four t e rms  
are  retained. 

As a resu l t  the following values of the coefficients are obtained: 

T = 2 0  i000 t500  2000 2500 2800 3000 *C 
a 1 ~ 1 . 5 5  t . 4 5  1 .05  0 . 6  0 . 9 8  i . 3  t . 6 . t 0  -8 c m Z / k u  
a~ = 6 . 4  0 0 . 5  1 .05  0 . 7  0 .25  0 . t . t 0  -s  ( c m Z / ~ g ) .  z 
a a = 0  0 0 0 0 . 2 8  0 .53  0 . 7 8 . t 0  -s  ( c m 2 / k g )  ~ 
a .  = 0 0 0 0 0 0 .85  2 . 8 . t 0  - l~  ( c m 2 / k g )  4 

The curves computed f rom formula (1.3) with the above values of the coefficients are  shown in Fig. 3 
by continuous lines. 

For  extending the obtained resul ts  to the intermediate t empera tu res  in the range 20-3000~ we shall 
take the pa rame te r  of ~-function constant in Eq. (1.6): a = - 0 . 5  and fl = 0.1. We shall a lso  assume that the 
tempera ture  dependence of the coefficients ak(T) and X(T) is of Arrhenius  type and is of the form 

a~(T)=a~~ (k~l,  2, 3, 4) (3.1) 

g(T) ~ ax~ exp ( - -  RU-~) (3.2) 

Here T is the absolute tempera ture ,  Uk and U x are  constants having the sense of activation energies 
of some mechanism,  R is the gas constant, and a~ and a~ are  constants.  

In order  to obtain the values of the pa r ame te r s  occurr ing  in (3.1) and {3.2) we approximate the ob- 
tained experimental  dependences ak(T) and X(T) by piecewise linear functions in the coordinates log ak,X ~ 
1/T.  The resul t  of this approximation is shown in Fig. 4. As seen f rom this f igure,  three segments in the 
h igh- tempera ture  range can be separated out: 1500-2000~ 2000-2500~ 2500-3000~ in each segment  
the pa r ame te r s  in formulas  (3.1) and (3.2) are  constant: 

T = 1500--2000 2000--2500 2500--3000 ~ 
U1 ~ - - 8 . 9  i 3 . 7  i 3 . 7  k c a l / g - a t o m  
Us ~ tt .8 --i. 1 --69.5 kcal/g-atom 
Ua = 0 36.6 36.6  kcal/g-atom 
U4 : 0 0 1i9.0 kcal/g-atom 
U x = 0 22.8 0 kcal/g-atom 
al  ~ ~ 0 . 8 5 . i 0 ~ a  2 8 . 5 . t 0 - t  2 8 . 5 . 1 0  -1 c m Z / k g  
as ~ = t 3 . 8 - 1 0 - 6  0 . 8 t .  10 -6 16 .9 .10  -1~ (cm~/kg)2  
a8 ~ = 0 2 0 . 7 . 1 0  -~ 2 0 . 7 " t 0  -~ ( c m 2 / k g )  ~ 
a4 ~ = 0 0 2 . 8 . 1 0  -~ ( cm2 /kg )4  
ax~ = 0" t 4 . 9  0 .23  (min) -0 .5  

At tempera tures  below 1500~ al(T) changes little; the coefficient az(T ) has a minimum 
in the range 300-500~ Additional experiments  are  neces sa ry  in order  to explain this minimum. 

However, graphite is used mainly in the range of high tempera tures ;  therefore  the investigation of the 
tempera ture  range below 1500~ is not of much interest .  
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The curves  computed f rom formula  (1.3) with the coefficients ak(T) obtained f rom formula  (3.1) at the 
corresponding tempera ture  are  shown in Fig. 2b for compar ison with the instantaneous load curves  a = 
~(~, T). 

Considering the intr insic sca t ter  of the p roper t i es  of the mater ia l  and also the fact  that the s t r e s s -  
s t rain d iagrams are obtained during a smal l  but nonzero t ime interval,  the agreement  should be considered 
completely sa t i s fac tory .  Hence, at sufficiently rapid loading ra tes  the s t r e s s - s t r a i n  d iagrams can be used 
as the instantaneous load curves .  

As shown in [2], the case of determinat ion of the deformation cha rac te r i s t i c s  within the f ramework  
of the investigated model can be considerably simplified, appreciably reducing the volume of required  long 
experiments  on creep.  

The creep curves  were computed f rom (1.6) for  constant s t r e s se s  and t empera tu res  corresponding to 
the experimental  values.  The computed curves  a re  shown for compar ison  in Fig. i by the continuous lines. 
The agreement  with the exper iment  is sa t is factory.  

4. The proposed phenomenological  model descr ibes  the relat ion between the s t r e ss  and the de fo rma-  
tion by a fourth degree polynomial.  

The authors did not aim at an exact descr ipt ion of the deformation and creep curves ,  since a large 
inhomogeneity and, hence, instability in the behavior under deformation is cha rac te r i s t i c  of graphite.  Be-  
sides, the determinat ion of the values of the entire set of p a r a m e t e r s  of the defining equation is not unique. 

The se l f - s imi la r  behavior of the variat ion of the tempera ture-dependent  coefficients,  shown in Fig. 4, 
can be explained in the following way. 

The nature of variat ion of the coefficient a 1 = 1/E ref lec ts  the t empera tu re  behavior of the instanta-  
neous modulus of elast ici ty E. 

The curve of variat ion of the coefficient a2, responsible  for thebase  slip, has a minimum in the range 
300-500~ This fact  is apparent ly related to the anisotropic  compress ion  of the c rys ta l s  along the axis 
perpendicular  to the base plane and to the blocking of the sys tems  of base slip. Anisotropic compress ion  is 
a consequence of the anisotropy in the thermal  expansion coefficient.  For  a monocrys ta l  this coefficient has 
a negative value along the base plane up to 500~ and is equal to ~-1o5  �9 10 -6 deg -1, while along the axis 
perpendicular  to the base plane it has a positive value ~ 28 - 10 -6 deg -1 [6]. The coefficient increases  as it 
goes over into the range of posit ive values.  The monotonic increase  of s trength and the low strength in the 
range 1500-2500~ indicates the predominance of the mechanisms of base slip. 

An intense increase  of the strength accompanied by an increase  of plas t ic i ty  in the t empera tu re  range 
2500-2800~ indicates a change of the mechanism responsible  for  plast ic deformation.  A s imi lar  phenomenon 
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(intense deformat ion re inforcement)  is observed  in some metals with hexagonal s t ruc tu re  and is explained 
by activation of nonbase slip sys tems  caused by the t empera tu re  increase  [7]. Probably this occurs  in 
graphite at t empera tu re s  of the o rde r  of 2500~ and is r e f l ec ted  in the change of the deformation curve and, 
hence, in the appearance of the t e r m  a~u ~. 

As the t e mpe ra tu r e  inc reases  (in the range 2800-3000~ the concentrat ion and the mobility of point 
defects increases :  the vacancies  in the base plane and the interphase atoms injected between the planes [8]; 
on one hand this leads to a dis tor t ion of the planes and a dec rease  of the base slip, and on the other  hand to 
an increase  of the ro le  of the mechanisms controll ing diffusion. 

A conf i rmat ion of the above s ta tement  apparently l ies  in the appreciable plast ic i ty  10-20% and in the 
more  mildly sloping deformat ion curves  in the range 2800-3000~ Due to this the coefficient a 4 becomes 
nonzero.  

The values of the activation energy must be r ega rded  as "apparent"  [9], since they a re  a r e su l t  of the 
action of severa l  mechanisms.  

The above explanation of the phenomenological  model r ep re sen t s  only a scheme which can be made 
more  detailed la te r  on. 
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